350 research outputs found

    Using Local Context To Improve Face Detection

    Full text link
    Most face detection algorithms locate faces by classifying the content of a detection window iterating over all positions and scales of the input image. Recent developments have accelerated this process up to real-time performance at high levels of accuracy. However, even the best of today's computational systems are far from being able to compete with the detection capabilities of the human visual system. Psychophysical experiments have shown the importance of local context in the face detection process. In this paper we investigate the role of local context for face detection algorithms. In experiments on two large data sets we find that using local context can significantly increase the number of correct detections, particularly in low resolution cases, uncommon poses or individual appearances as well as occlusions

    Phosphopeptide patterns of the ribosomal protein S6 following stimulation of guineapig parotid glands by secretagogues involving either cAMP or calcium as second messenger

    Get PDF
    AbstractStimulation of secretion in exocrine cells is associated with the incorporation of up to 3 to 4 phosphates into the ribosomal protein S6. This occurs with secretagogues involving either cAMP or free calcium as second messenger. An analysis of the phosphorylation pattern of S6 from stimulated guineapig parotid glands reveals 3 phosphopeptides (termed A,B,C). The phosphopeptide pattern was identical for cAMP- or calcium-mediated stimulation, whereas phosphorylation of the S6 protein in vitro with catalytic subunit of cAMP-dependent protein kinase resulted only in the formation of phosphopeptides A and C. Therefore, secretagogue-mediated phosphorylation is not or not exclusively catalyzed by cAMP-dependent protein kinase even when cAMP is the second messenger

    Particle-unstable nuclei in the Hartree-Fock theory

    Get PDF
    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant states become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: 10He, 12O, 26O and 28O.Comment: 5 pages, LaTeX, submitted to Phys. Rev. Let

    Shell Corrections for Finite-Depth Deformed Potentials: Green's Function Oscillator Expansion Method

    Get PDF
    Shell corrections of the finite deformed Woods-Saxon potential are calculated using the Green's function method and the generalized Strutinsky smoothing procedure. They are compared with the results of the standard prescription which are affected by the spurious contribution from the unphysical particle gas. In the new method, the shell correction approaches the exact limit provided that the dimension of the single-particle (harmonic oscillator) basis is sufficiently large. For spherical potentials, the present method is faster than the exact one in which the contribution from the particle continuum states is explicitly calculated. For deformed potentials, the Green's function method offers a practical and reliable way of calculating shell corrections for weakly bound nuclei.Comment: submitted to Phys. Rev. C, 12 pages, 7 figure

    On the Invariant Theory of Weingarten Surfaces in Euclidean Space

    Full text link
    We prove that any strongly regular Weingarten surface in Euclidean space carries locally geometric principal parameters. The basic theorem states that any strongly regular Weingarten surface is determined up to a motion by its structural functions and the normal curvature function satisfying a geometric differential equation. We apply these results to the special Weingarten surfaces: minimal surfaces, surfaces of constant mean curvature and surfaces of constant Gauss curvature.Comment: 16 page

    A pp-adic RanSaC algorithm for stereo vision using Hensel lifting

    Full text link
    A pp-adic variation of the Ran(dom) Sa(mple) C(onsensus) method for solving the relative pose problem in stereo vision is developped. From two 2-adically encoded images a random sample of five pairs of corresponding points is taken, and the equations for the essential matrix are solved by lifting solutions modulo 2 to the 2-adic integers. A recently devised pp-adic hierarchical classification algorithm imitating the known LBG quantisation method classifies the solutions for all the samples after having determined the number of clusters using the known intra-inter validity of clusterings. In the successful case, a cluster ranking will determine the cluster containing a 2-adic approximation to the "true" solution of the problem.Comment: 15 pages; typos removed, abstract changed, computation error remove

    Skyrme mean-field study of rotational bands in transfermium isotopes

    Get PDF
    Self-consistent mean field calculations with the SLy4 interaction and a density-dependent pairing force are presented for nuclei in the Nobelium mass region. Predicted quasi-particle spectra are compared with experiment for the heaviest known odd N and odd Z nuclei. Spectra and rotational bands are presented for nuclei around No252,4 for which experiments are either planned or already running.Comment: 13 pages LATEX, elsart style, 6 embedded eps figure

    Relativistic mean-field study of neutron-rich nuclei

    Get PDF
    A relativistic mean-field model is used to study the ground-state properties of neutron-rich nuclei. Nonlinear isoscalar-isovector terms, unconstrained by present day phenomenology, are added to the model Lagrangian in order to modify the poorly known density dependence of the symmetry energy. These new terms soften the symmetry energy and reshape the theoretical neutron drip line without compromising the agreement with existing ground-state information. A strong correlation between the neutron radius of 208Pb and the binding energy of valence orbitals is found: the smaller the neutron radius of 208Pb, the weaker the binding energy of the last occupied neutron orbital. Thus, models with the softest symmetry energy are the first ones to drip neutrons. Further, in anticipation of the upcoming one-percent measurement of the neutron radius of 208Pb at the Thomas Jefferson Laboratory, a close relationship between the neutron radius of 208Pb and neutron radii of elements of relevance to atomic parity-violating experiments is established.Comment: 14 pages, 5 figure

    Three-body resonances in He-6, Li-6, and Be-6, and the soft dipole mode problem of neutron halo nuclei

    Full text link
    Using the complex scaling method, the low-lying three-body resonances of 6^6He, 6^6Li, and 6^6Be are investigated in a parameter-free microscopic three-cluster model. In 6^6He a 2+^+, in 6^6Li a 2+^+ and a 1+^+, and in 6^6Be the 0+^+ ground state and a 2+^+ excited state is found. The other experimentally known 2+^+ state of 6^6Li cannot be localized by our present method. We have found no indication for the existence of the predicted 1^- soft dipole state in 6^6He. We argue that the sequential decay mode of 6^6He through the resonant states of its two-body subsystem can lead to peaks in the excitation function. This process can explain the experimental results in the case of 11^{11}Li, too. We propose an experimental analysis, which can decide between the soft dipole mode and the sequential decay mode.Comment: REVTEX, Submitted to Phys. Rev. C, 12 pages, 2 postscript figures are available upon request. CALTECH, MAP-16

    Local realizations of contact interactions in two- and three-body problems

    Get PDF
    Mathematically rigorous theory of the two-body contact interaction in three dimension is reviewed. Local potential realizations of this proper contact interaction are given in terms of Poschl-Teller, exponential and square-well potentials. Three body calculation is carried out for the halo nucleus 11Li using adequately represented contact interaction.Comment: submitted to Phys. Rev.
    corecore